执飞机型:Cessna 208单发涡桨固定翼飞机座位数:12个巡航速度:341km/h较大航程:1280km实用升限:7224m较大起飞重量:3970kg机组人员配置:双机长制机组机载观察设备:光电吊舱、手持红外长焦摄像机等
卫星遥感监测系统是利用遥感技术进行监测的技术方法,主要有地面覆盖、大气、海洋和近地表状况等。遥感监测技术是通过航空或卫星等收集环境的电磁波信息对远离的环境目标进行监测识别环境质量状况的技术,它是一种的环境信息获取技术,在获取大面积同步和动态环境信息方面“快”而“全”,是其他检测手段无法比拟和完成的。因此,得到日益广泛的应用,如大气、水质遥感监测,海洋油污染事故调查,城市热环境及水域热污染调查,城市绿地、景观和环境背景调查,生态环境调查监测等。
与传统矿山监测的区别
矿山遥感监测工作是在遥感技术飞跃发展并广泛利用的前提下,在传统矿山监测的基础上逐步形成的。它与传统矿山检测的基本区别在于:
1.快速、及时性。矿山遥感监测工作能够在较短时间内完成目标对象的调查,快速形成调查结果,为违法开采现象的遏制、矿山地质灾害防洪工作及时提供技术支撑。
2.客观、真实性。矿山遥感监测工作以遥感影像上的真实反映为基础,充分利用遥感技术的现势性、广域性、宏观性特点,完成调查区的全面调查,避免了传统矿山检测工作中的人为疏漏,调查成果客观、。
3.经济性。矿山遥感监测工作时以遥感地质学的基本理论与方法为,在工作中以多元多尺度遥感资料的系统解译与分析研究为主,地质、矿质等多源数据为辅,通过室内影响的判释即可获取大量成果信息,大大节省了野外调查区工作量,经济效益明显。加强了矿山检测工作的预见性和主动性,相较于传统矿山监测来说,具有更强的宏观性和时效性。按照其时效性要求,矿山遥感监测工作可分为常规矿山遥感监测和应急矿山遥感监测两种。
数据处理方法编辑
为了研究的需要,一般选择影像清晰、反差适中、时相好、各项指标均能符合要求、容易辨别地类地物的遥感影像数据。对于所获取的遥感影像数据,需要进行预处理才能正式使用。常用的Landsat TM影像在地面接收站即进行过较粗的校正和几何校正,除高精度的定量应用外,TM影像一般只需要进行几何校正即可,校正后,进行图像增强处理、波段合成及图像拼接、裁剪处理,以期进一步发掘遥感影像的潜在信息,**和显示目标物的所需专题特息。根据不同土地利用类型的光谱反映特征建立翻译标志,采用目视解译法识别影像的特征属性,并结合野外调查资料对影像进行监督分类,得到遥感分类图,比较各时相的遥感分类图,完成检测区的详细制图
社会公益需求
卫星遥感技术用于气象监测
主要有以下几种类型:
(1)土地利用、城市化及荒漠化监测;
(2)农作物、森林等可再生资源的监测和评估;
(3)灾害监测和环境监测。
此外,对道路、建筑工程的设计、选址等方面也有着广阔的前景。
商业应用需求
遥感技术的应用是较其广泛的,包括凡是涉及地球科学的各门类的学科和技术种类,遥感技术都能为它们提供信息。
高空间分辨率图像数据和地理信息系统紧密结合,在未来的城市规划、地籍管理、工程评估等方面将有广阔的市场,预计每年会有14%左右的增长率;由于卫星数据的增加和小型廉价的工作站,图像处理系统、软件的发展与此相关的空间信息服务公司大大增加,由此形成的增值收益是卫星图像销售收益的六倍。由此可见,卫星遥感的商业化是卫星遥感应用产业化发展的推动力之一。
空基监测系统
灾害监测仪器设备在地球表面以上、中层大气及以下的为空基观察,主要由飞机监测、飞艇监测、气球探测等系统组成。空基监测系统应作为天基和地基检测系统的补充,侧重于灾害期间实现应急监测和重点区域监测。空间监测体系按运载平台划分为4个部分:
(1)有人飞机;
(2)无人飞机;
(3)无人飞艇;
(4)气球。
气象卫星的估算应用比较广泛。前面说过,气象卫星还能够对农作物长势、病虫害及冻害进行监测,但这只是一方面。气象卫星能够对灾害面积进行估计,对农作物收成作出估算,甚至对各种资源,如渔业资源,能进行遥感探测,显示出其特的本领。
举例说,早在1991年,在江淮地区发生特大洪水时,江苏省气象局农业气象中心利用接收到的气象卫星资料,估计出江苏省受淹农田面积为53.3万公顷。江苏省民政厅正是参考了这个遥感结果来分发救灾款物的。
利用卫星进行估产不是近的事,早在二十多年前,美国为了研究国际市场的小麦价格,在麦收前两个月,利用卫星对前苏联小麦进行了测算,认为苏联产量约为9140万吨,结果后来进行核对,误差不到1%。
气象卫星是怎么利用遥感信息资料进行估产的呢?原来,植物的绿叶是进行光合作用的基本。一般地说,植物叶面积越大,光合作用就越强,经济产量就可能越高,这是一种植物生理机制,这种生理机制反映的信息也就通过其反射光谱的不同波段反映出来。当作物叶子遭受干旱、病虫害时,叶片的含水量会减少,叶绿素减少,光合作用也相应减弱,此时叶绿素吸收蓝光、红光能力降低。同时,作物在不同的生长和发育阶段,由于叶片的叶绿素含量和内部结构不同,它们的光谱反映曲线也会不同。根据这种原理,气象卫星就可以捕捉到作物的生长情况,进而推算未来的收成。
美国的*三代业务轨气象卫星,在作物估产方面成绩不小。该卫星在运行过程中,每天有四次扫过同一具体地点,在无云的地区,它们可以很快地反映植物叶绿素对光的吸收率和反射率,通过反射率值可以算出绿度值,通过绿度值就可以监测作物生长状况,进而估计作物产量。
1985年我国就在天气系统开展了遥感综合测产项目,1990年正式投入业务运行。实践,该技术对农作物的估产具有迅速、宏观、准确的特点,可以弥补传统农业估产时间长、效率低的不足。
利用气象卫星遥感渔业资源的原理与小麦估产有所不同。应用气象卫星可以用红外遥感仪器测出海水表面温度,在绘出海水表层温度分布等值线图后,就可以根据鱼类生活规律与海水温度的关系来确定渔场位置,并绘成渔海况速报图。美国、日本已有渔海况速报系统,它包括卫星海况图和渔海况图。它们可以作为渔民海洋捕捞业的重要参考。
2013年1月27日以来,中国有130万平方公里的面积受到灰霾天的影响。据悉,这也是中国确切公布灰霾天的影响范围。此次能及时向公众发布灰霾影响范围的相关信息得益于,中国从2013年1月1日起,对70多个城市开展了PM2.5的监测,而且还开始运用卫星遥感技术、从空中监测灰霾的影响范围。利用卫星遥感技术监测灰霾相当于每一平方公里就能收集到一组监测数据,这样的监测密度是普通地面监测站点不能覆盖的。灰霾监测中卫星遥感手段的应用,不仅可以弥补灰霾地面监测站点所不能覆盖到的区域,而且卫星遥感得到的灰霾分布、面积、等级、频次等指标可以大大丰富、完善当前的地面灰霾监测指标,有助于全面、客观地掌握灰霾的发生状况。此外,基于灰霾的光学特征开展的卫星灰霾遥感监测,可以较好地用于识别灰霾的发生及其严重程度。
联系手机是18054416117,
主要经营泰格森安(山东)物联科技有限公司主营:森林防火语音卡口、泰格森安森林防火宣传语音杆、泰格森安森林防火卡口、泰格森安森林防火监控卡口、森林防火警卡口设备、森林防火安全系统等;且森林防火预警平台依托物联网技术,将传统森林防火工作中的许多场景融为一体。。